Selasa, 21 Juli 2009

GELOMBANG

Bunyi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Langsung ke: navigasi, cari

Bunyi atau suara adalah kompresi mekanikal atau gelombang longitudinal yang merambat melalui medium. Medium atau zat perantara ini dapat berupa zat cair, padat, gas. Jadi, gelombang bunyi dapat merambat misalnya di dalam air, batu bara, atau udara.

Kebanyakan suara adalah merupakan gabungan berbagai sinyal, tetapi suara murni secara teoritis dapat dijelaskan dengan kecepatan osilasi atau frekuensi yang diukur dalam Hertz (Hz) dan amplitudo atau kenyaringan bunyi dengan pengukuran dalam desibel.

Manusia mendengar bunyi saat gelombang bunyi, yaitu getaran di udara atau medium lain, sampai ke gendang telinga manusia. Batas frekuensi bunyi yang dapat didengar oleh telinga manusia kira-kira dari 20 Hz sampai 20 kHz pada amplitudo umum dengan berbagai variasi dalam kurva responsnya. Suara di atas 20 kHz disebut ultrasonik dan di bawah 20 Hz disebut infrasonik.

Daftar isi

[sembunyikan]

[sunting] Kenyaringan dan Desibel

Bunyi kereta lebih nyaring daripada bunyi bisikan, sebab bunyi kereta menghasilkan getaran lebih besar di udara. Kenyaringan bunyi juga bergantung pada jarak kita ke sumber bunyi. Kenyaringan diukur dalam satuan desibel (dB). Bunyi pesawat jet yang lepas landas mencapai sekitar 120 dB. Sedang bunyi desiran daun sekitar 33 dB.

Kebanyakan suara adalah merupakan gabungan berbagai sinyal, tetapi suara murni secara teoritis dapat dijelaskan dengan kecepatan osilasi atau frekuensi yang diukur dalam Hertz (Hz) dan amplitudo atau kenyaringan bunyi dengan pengukuran dalam desibel.

Manusia mendengar bunyi saat gelombang bunyi, yaitu getaran di udara atau medium lain, sampai ke gendang telinga manusia. Batas frekuensi bunyi yang dapat didengar oleh telinga manusia kira-kira dari 20 Hz sampai 20 kHz pada amplitudo umum dengan berbagai variasi dalam kurva responsnya. Suara di atas 20 kHz disebut ultrasonik dan di bawah 20 Hz disebut infrasonik.

[sunting] Gema

Gema terjadi jika bunyi dipantulkan oleh suatu permukaan, seperti tebing pegunungan, dan kembali kepada kita segera setelah bunyi asli dikeluarkan. Kejernihan ucapan dan musik dalam ruangan atau gedung konser tergantung pada cara bunyi bergaung di dalamnya. Bunyi atau suara adalah kompresi mekanikal atau gelombang longitudinal yang merambat melalui medium. Medium atau zat perantara ini dapat berupa zat cair, padat, gas. Jadi, gelombang bunyi dapat merambat misalnya di dalam air, batu bara, atau udara jadi, gema adalah gelombang pantul/ reaksi dari gelombang yang dipancarkan bunyi.

[sunting] Gelombang Bunyi

Gelombang bunyi terdiri dari molekul-molekul udara yang bergetar maju-mundur. Tiap saat, molekul-molekul itu berdesakan di beberapa tempat, sehingga menghasilkan wilayah tekanan tinggi, tapi di tempat lain merenggang, sehingga menghasilkan wilayah tekanan rendah. Gelombang bertekanan tinggi dan rendah secara bergantian bergerak di udara, menyebar dari sumber bunyi. Gelombang bunyi ini menghantarkan bunyi ke telinga manusia,Gelombang bunyi adalah gelombang longitudinal.

[sunting] Kecepatan Bunyi

Bunyi merambat di udara dengan kecepatan 1.224 km/jam. Bunyi merambat lebih lambat jika suhu dan tekanan udara lebih rendah. Di udara tipis dan dingin pada ketinggian lebih dari 11 km, kecepatan bunyi 1.000 km/jam. Di air, kecepatannya 5.400 km/jam, jauh lebih cepat daripada di udara Rumus mencari cepat rambat bunyi adalah v=s:t Dengan s panjang Gelombang bunyi dan t waktu

[sunting] Resonansi

Suatu benda, misalnya gelas, mengeluarkan nada musik jika diketuk sebab ia memiliki frekuensi getaran alami sendiri. Jika kita menyanyikan nada musik berfrekuensi sama dengan suatu benda, benda itu akan bergetar. Peristiwa ini dinamakan resonansi. Bunyi yang sangat keras dapat mengakibatkan gelas beresonansi begitu kuatnya sehingga pecah.

GERAK

Gerak Lurus Berubah Beraturan (GLBB)

Gerak lurus berubah beraturan (GLBB) diartikan sebagai gerak benda dalam lintasan lurus dengan percepatan tetap. Yang dimaksudkan dengan percepatan tetap adalah perubahan kecepatan gerak benda yang berlangsung secara tetap dari waktu ke waktu. Mula-mula dari keadaan diam, benda mulai bergerak, semakin lama semakin cepat dan kecepatan gerak benda tersebut berubah secara teratur. Perubahan kecepatan bisa berarti tejadi pertambahan kecepatan atau pengurangan kecepatan. Pengurangan kecepatan terjadi apabila benda akan berhenti. dalam hal ini benda mengalami perlambatan tetap. Pada pembahasan ini kita tidak menggunakan istilah perlambatan untuk benda yang mengalami pengurangan kecepatan secara teratur. Kita tetap menamakannya percepatan, hanya nilainya negatif. Jadi perlambatan sama dengan percepatan yang bernilai negatif.

Dalam kehidupan sehari-hari sangat sulit ditemukan benda yang melakukan gerak lurus berubah beraturan, di mana perubahan kecepatannya terjadi secara teratur, baik ketika hendak bergerak dari keadaan diam maupun ketika hendak berhenti. walaupun demikian, banyak situasi praktis terjadi ketika percepatan konstan/tetap atau mendekati konstan, yaitu jika percepatan tidak berubah terhadap waktu (ingat bahwa yang dimaksudkan di sini adalah percepatan tetap, bukan kecepatan tetap. Beda lho….).

Penurunan Rumus Gerak Lurus Berubah Beraturan (GLBB)

Rumus dalam fisika sangat membantu kita dalam menjelaskan konsep fisika secara singkat dan praktis. Jadi cobalah untuk mencintai rumus, he2…. Dalam fisika, anda tidak boleh menghafal rumus. Pahami saja konsepnya, maka anda akan mengetahui dan memahami cara penurunan rumus tersebut. Hafal rumus akan membuat kita cepat lupa dan sulit menyelesaikan soal yang bervariasi….

Sekarang kita coba menurunkan rumus-rumus dalam Gerak Lurus Berubah Beraturan (GLBB). Pahami perlahan-lahan ya….

Pada penjelasan di atas, telah disebutkan bahwa dalam GLBB, percepatan benda tetap atau konstan alias tidak berubah. (kalau di GLB, yang tetap adalah kecepatan). Nah, kalau percepatan benda tersebut tetap sejak awal benda tersebut bergerak, maka kita bisa mengatakan bahwa percepatan sesaat dan percepatan rata-ratanya sama. Bisa ya ? ingat bahwa percepatan benda tersebut tetap setiap saat, dengan demikian percepatan sesaatnya tetap. Percepatan rata-rata sama dengan percepatan sesaat karena baik percepatan awal maupun percepatan akhirnya sama, di mana selisih antara percepatan awal dan akhir sama dengan nol.

Jika sudah paham, sekarang kita mulai menurunkan rumus-rumus alias persamaan-persamaan.

Pada pembahasan mengenai percepatan, kita telah menurunkan persamaan/rumus percepatan rata-rata, di mana

t0 adalah waktu awal ketika benda hendak bergerak, t adalah waktu akhir. Karena pada saat t0 benda belum bergerak maka kita bisa mengatakan t0 (waktu awal) = 0. Nah sekarang persamaan berubah menjadi :

Satu masalah umum dalam GLBB adalah menentukan kecepatan sebuah benda pada waktu tertentu, jika diketahui percepatannya (sekali lagi ingat bahwa percepatan tetap). Untuk itu, persamaan percepatan yang kita turunkan di atas dapat digunakan untuk menyatakan persamaan yang menghubungkan kecepatan pada waktu tertentu (vt), kecepatan awal (v0) dan percepatan (a). sekarang kita obok2 persamaan di atas…. Jika dibalik akan menjadi

ini adalah salah satu persamaan penting dalam GLBB, untuk menentukan kecepatan benda pada waktu tertentu apabila percepatannya diketahui. Jangan dihafal, pahami saja cara penurunannya dan rajin latihan soal biar semakin diingat….

Selanjutnya, mari kita kembangkan persamaan di atas (persamaan I GLBB) untuk mencari persamaan yang digunakan untuk menghitung posisi benda setelah waktu t ketika benda tersebut mengalami percepatan tetap.

Pada pembahasan mengenai kecepatan, kita telah menurunkan persamaan kecepataan rata-rata

Karena pada GLBB kecepatan rata-rata bertambah secara beraturan, maka kecepatan rata-rata akan berada di tengah-tengah antara kecepatan awal dan kecepatan akhir;

Persamaan ini berlaku untuk percepatan konstan dan tidak berlaku untuk gerak yang percepatannya tidak konstan. Kita tulis kembali persamaan a :

Persamaan ini digunakan untuk menentukan posisi suatu benda yang bergerak dengan percepatan tetap. Jika benda mulai bergerak pada titik acuan = 0 (atau x0 = 0), maka persamaan II dapat ditulis menjadi

Sekarang kita turunkan persamaan/rumus yang dapat digunakan apabila t (waktu) tidak diketahui.

Sekarang kita subtitusikan persamaan ini dengan nilai t pada persamaan c

Terdapat empat persamaan yang menghubungkan posisi, kecepatan, percepatan dan waktu, jika percepatan (a) konstan, antara lain :

Persamaan di atas tidak berlaku jika percepatan tidak konstan/tetap. Ingat bahwa x menyatakan posisi/kedudukan, bukan jarak dan ( x – x0 ) adalah perpindahan (s)

Latihan Soal

  1. Sebuah mobil sedang bergerak dengan kecepatan 20 m/s ke utara mengalami percepatan tetap 4 m/s2 selama 2,5 sekon. Tentukan kecepatan akhirnya

Panduan jawaban :

Pada soal, yang diketahui adalah kecepatan awal (v0) = 20 m/s, percepatan (a) = 4 m/s dan waktu tempuh (t) = 2,5 sekon. Karena yang diketahui adalah kecepatan awal, percepatan dan waktu tempuh dan yang ditanyakan adalah kecepatan akhir, maka kita menggunakan persamaan/rumus

  1. Sebuah pesawat terbang mulai bergerak dan dipercepat oleh mesinnya 2 m/s2 selama 30,0 s sebelum tinggal landas. Berapa panjang lintasan yang dilalui pesawat selama itu ?

Panduan Jawaban

Yang diketahui adalah percepatan (a) = 2 m/s2 dan waktu tempuh 30,0 s. wah gawat, yang diketahui Cuma dua…. Bingung, tolooooooooooooooooong dong ding dong… pake rumus yang mana, PAKE RUMUS GAWAT DARURAT. He2……

Santai saja. Kalau ada soal seperti itu, kamu harus pake logika juga. Ada satu hal yang tersembunyi, yaitu kecepatan awal (v0). Sebelum bergerak, pesawat itu pasti diam. Berarti v0 = 0.

Yang ditanyakan pada soal itu adalah panjang lintasan yang dilalui pesawat. Tulis dulu persamaannya (hal ini membantu kita untuk mengecek apa saja yang dibutuhkan untuk menyelesaikan soal tersebut)

Pada soal di atas, S0 = 0, karena pesawat bergerak dari titik acuan nol. Karena semua telah diketahui maka kita langsung menghitung panjang lintasan yang ditempuh pesawat

Ternyata, panjang lintasan yang ditempuh pesawat adalah 900 m.

  1. sebuah mobil bergerak pada lintasan lurus dengan kecepatan 60 km/jam. karena ada rintangan, sopir menginjak pedal rem sehingga mobil mendapat perlambatan (percepatan yang nilainya negatif) 8 m/s2. berapa jarak yang masih ditempuh mobil setelah pengereman dilakukan ?

Panduan jawaban

Untuk menyelesaikan soal ini dibutuhkan ketelitian dan logika. Perhatikan bahwa yang ditanyakan adalah jarak yang masih ditempuh setelah pengereman dilakukan. Ini berarti setelah pengereman, mobil tersebut berhenti. dengan demikian kecepatan akhir mobil (vt) = 0. karena kita menghitung jarak setelah pengereman, maka kecepatan awal (v0) mobil = 60 km/jam (dikonversi terlebih dahulu menjadi m/s, 60 km/jam = 16,67 m/s ). perlambatan (percepatan yang bernilai negatif) yang dialami mobil = -8 m/s2. karena yang diketahui adalah vt, vo dan a, sedangkan yang ditanyakan adalah s (t tidak diketahui), maka kita menggunakan persamaan

Dengan demikian, jarak yang masih ditempuh mobil setelah pengereman hingga berhenti = 17,36 meter (yang ditanyakan adalah jarak(besaran skalar))

  1. sebuah sepeda motor sedang bergerak pada jalan lurus dengan kecepatan 24 m/s. pengendara melihat rintangan di depannya dan ia memerlukan waktu 0,5 s untuk bereaksi menginjak rem. Jika perlambatan yang dihasilkan pengereman 6 m/s2, hitunglah jarak henti minimum yang diperlukan mulai saat pengendara sepeda motor melihat rintangan.

Panduan jawaban :

Wah, soal makin sulit. Bagaimanakah mengerjakannya ? tutup mata, tarik nafas pendek 100 kali. Sekarang siap bertempur.

Baca kembali soal di atas secara perlahan-lahan sambil pahami maksudnya. Pertama, dikatakan bahwa pengendara memerlukan waktu 0,5 s untuk bereaksi menginjak rem. Ingat bahwa sepeda motor tersebut sedang bergerak dengan kecepatan 24 m/s. dengan demikian, selama 0,5 s, sepeda motor tersebut melakukan Gerak Lurus Beraturan (GLB). Setelah menginjak rem, baru sepeda motor tersebut melakukan Gerak Lurus Berubah Beraturan (GLBB), di mana perlambatan yang dihasilkan pengereman sebesar 6 m/s2 menyebabkan motor tersebut berhenti.

Untuk menyelesaikan soal ini, kita membaginya ke dalam dua bagian, yaitu bagian I : GLB dan bagian II : GLBB

Bagian I : GLB

Pada bagian ini, kita menghitung jarak yang telah ditempuh sepeda motor sebelum pengendaranya menginjak rem. Karena diketahui kecepatan 24 m/s dan waktu 0,5 s maka : s = v t = (24 m/s) (0,5 s) = 12 meter.

Bagian II : GLBB

Sekarang kita menghitung jarak tempuh sepeda motor setelah pengereman. Diketahui Kecepatan awal (v0) = 24 m/s; kecepatan akhir (vt) = 0 (sepeda motor berhenti). perlambatan (percepatan negatif : a) = -6 m/s2. karena waktu (t) tidak diketahui maka kita menggunakan persamaan

Setelah pengereman, sepeda motor menempuh jarak 48 meter sebelum berhenti.

Pertanyaan soal di atas adalah : hitunglah jarak henti minimum yang diperlukan mulai saat pengendara sepeda motor melihat rintangan.

Dengan demikian, jarak henti minimum yang diperlukan adalah :

12 m + 48 m = 60 meter